HOMEWORK 9

MATH 430

Problem 1. Prove the Chinese Remainder Theorem: If d_{1}, \ldots, d_{n} are relatively prime natural numbers, and a_{1}, \ldots, a_{n} are such that for all $i, a_{i}<d_{i}$, then there is some c, such that for all $i, c=a_{i} \bmod d_{i}$.

Recall that in class we defined a formula $\phi_{\text {prime }}^{*}(n, p)$ in a Σ_{1} form, such that $\mathfrak{A} \models \phi_{\text {prime }}^{*}[n, p]$ iff p is the n-th prime. Here $\mathfrak{A}=(\mathbb{N}, 0, S,+, \cdot,<)$ is the standard model of PA.

Problem 2. Show that $\phi_{\text {prime }}^{*}(n, p)$ is Δ_{1} by writing a Π_{1} formula and showing that it is equivalent to $\phi_{\text {prime }}^{*}(n, p)$.
Problem 3. Show that any model \mathfrak{B} of PA is an end-extension of the standard model \mathfrak{A}. I.e. show that there is a one-to-one function $h: \mathbb{N} \rightarrow|\mathfrak{B}|$, such that h is homomorphism (see the definition on page 94 in the book), and for every $b \mathbb{B}_{\mathbb{B}} c$, if $c \in \operatorname{ran}(h)$, then $b \in \operatorname{ran}(h)$.

Problem 4. Suppose that ϕ is a Δ_{0}-formula, such that $\mathfrak{A} \vDash \phi$. Show that any model \mathfrak{B} of PA is satisfies ϕ. Conclude that if ϕ is a Δ_{0}-formula, then $\mathfrak{A}=\phi$ iff $P A \models \phi$.

