HOMEWORK 9 MATH 430

Problem 1. Prove the Chinese Remainder Theorem: If $d_1, ..., d_n$ are relatively prime natural numbers, and $a_1, ..., a_n$ are such that for all $i, a_i < d_i$, then there is some c, such that for all $i, c = a_i \mod d_i$.

Recall that in class we defined a formula $\phi_{prime}^*(n,p)$ in a Σ_1 form, such that $\mathfrak{A} \models \phi_{prime}^*[n,p]$ iff p is the *n*-th prime. Here $\mathfrak{A} = (\mathbb{N}, 0, S, +, \cdot, <)$ is the standard model of PA.

Problem 2. Show that $\phi_{prime}^*(n,p)$ is Δ_1 by writing a Π_1 formula and showing that it is equivalent to $\phi_{prime}^*(n,p)$.

Problem 3. Show that any model \mathfrak{B} of PA is an end-extension of the standard model \mathfrak{A} . I.e. show that there is a one-to-one function $h : \mathbb{N} \to |\mathfrak{B}|$, such that h is homomorphism (see the definition on page 94 in the book), and for every $b <_{\mathbb{B}} c$, if $c \in \operatorname{ran}(h)$, then $b \in \operatorname{ran}(h)$.

Problem 4. Suppose that ϕ is a Δ_0 -formula, such that $\mathfrak{A} \models \phi$. Show that any model \mathfrak{B} of PA is satisfies ϕ . Conclude that if ϕ is a Δ_0 -formula, then $\mathfrak{A} \models \phi$ iff $PA \models \phi$.